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 Large-Scale Evaluations of Curricular Effectiveness:
 The Case of Elementary Mathematics in Indiana

 Rachana Bhatt

 Georgia State University

 Cory Koedel
 University of Missouri

 We use data from one of the few states where information on curriculum adoptions is available—
 Indiana—to empirically evaluate differences in performance across three elementary-mathematics
 curricula. The three curricula that we evaluate were popular nationally during the time of our study,
 and two of the three remain popular today. We find large differences in effectiveness between the
 curricula, most notably between the two that held the largest market shares in Indiana. Both are best
 characterized as traditional in pedagogy. We also show that the publisher of the least-effective cur
 riculum did not lose market share in Indiana in the following adoption cycle; one explanation is that
 educational decision makers lack information about differences in curricular effectiveness.

 Keywords: curricular effectiveness, elementary school mathematics, curriculum evaluation, math
 curriculum

 I. Introduction

 According to a 2002 survey sponsored by the
 National Education Association and the American

 Association of Publishers, 80% of teachers use
 textbooks in the classroom and over half of

 students' in-class instructional time involves

 textbook use (Finn, 2004).1 Braswell et al.
 (2001) report that 56% of fourth graders do
 math problems from their textbooks every day.
 Given the central role that curriculum materials

 play in the education production process, it
 stands to reason that differences across curricula

 in terms of content, organization, and pedagogy
 can lead to differences in student achievement.

 This sentiment is echoed in a recent research

 brief from the National Council of Teachers of

 Mathematics (NCTM, 2009), which notes that
 selecting a math curriculum is "one of the most
 critical decisions educational leaders make"

 (p. 1).
 The curriculum market is diverse—in the

 case of elementary mathematics, for example,
 the What Works Clearinghouse (WWC) has
 identified over 70 different curriculum options.2
 But there are few rigorous, empirical evalua
 tions of curricular effectiveness; the research
 literature is surprisingly thin. One reason is that
 most state education agencies do not provide
 information about which curricula are used in
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 which schools and districts. In fact, many states
 do not collect centralized data at all. The lack of

 data prevents empirical analyses, and as a result,
 there is little in the way of reliable evidence on
 curricular effectiveness (Slavin & Lake, 2008;
 WWC, 2007). This limits the ability of educational
 administrators to make informed curriculum

 adoption decisions.
 This study makes two contributions to the

 research literature on curricular effectiveness.

 First, we use data from one of two states that
 track curriculum adoptions over time (Indiana)
 to estimate differences in effectiveness between

 three elementary-mathematics curricula. Each
 of the curricula had large, national market shares
 during the time of our study (1998-2004), and
 two of the three have large market shares today.
 The three curricula differ in organization and
 pedagogy and share similarities with other cur
 ricula that we do not evaluate directly. A notable
 and ongoing disagreement in the literature is
 between advocates of "traditional" and "reform"

 approaches to mathematics instruction. A key
 insight from our analysis is that there can be
 large differences in effectiveness between cur
 ricula that share the same pedagogical approach.

 A second contribution of our study relates to
 the larger issue that the research literature in this

 area is so thin. There are too many curriculum
 options within any given subject-grade group,
 including elementary mathematics, for a single
 study to cover them all. Moreover, a single
 study cannot replicate the variety of educational
 environments in which curricula are used, which

 is important given that curricula may perform
 differently in different contexts. But a series of
 independent evaluations from multiple contexts,
 taken together, could provide valuable informa
 tion about the effectiveness of the various cur

 ricular alternatives. With this in mind, we pro
 vide extensive technical details regarding our
 evaluation so that it can be used as a resource

 for future, similar studies (some of these details
 are provided in the online appendix at http://
 epa.sagepub.com). Every evaluation environ
 ment will be different, but empirical studies
 along the lines of what we present here are
 likely to be feasible in many states. Furthermore,
 they would be relatively inexpensive to per
 form. If state education agencies would simply
 begin collecting data on curriculum adoptions

 and make these data available, studies could be
 produced that would arm decision makers with
 valuable information on this important topic.

 We highlight two key findings from this par
 ticular evaluation. First, we identify statistically
 significant and meaningful differences in cur
 riculum performance as measured by school
 level test scores on the Indiana state test

 (ISTEP). We find the most substantial differ
 ences between two curricula that use the same

 pedagogical approach (traditional) but differ in
 other respects. Although much attention is
 devoted to the debate over traditional- versus

 reform-based mathematics instruction, our find

 ings suggest that other differences in curriculum
 design are substantively important. A second
 key result is that the publisher of the curriculum
 we found to be least effective did not lose mar

 ket share in the following adoption cycle in
 Indiana. There are several potential explana
 tions for this result. Perhaps the most compel
 ling is that decision makers have virtually no
 information about which curricula are most

 effective.3

 II. Background

 To the best of our knowledge, only two
 states—Indiana and Florida—make current and

 historical information on curriculum adoptions
 publicly available. Many states do not track cur
 riculum adoptions at all, making it impossible to
 perform empirical analyses that can inform
 decision makers. This is an issue that can be

 easily remedied moving forward, and we
 argue that it should be remedied; however, the
 current data infrastructure in most states makes

 large-scale empirical investigations of curricular
 effectiveness infeasible.

 In the present study, we use the Indiana data
 to estimate relative curriculum effects for the

 three most commonly adopted elementary
 mathematics curricula in the state during the
 1998-2004 curriculum-adoption cycle.4 These
 three curricula—Saxon Math (Saxon), Silver
 Burdett Ginn (SBG) Mathematics, and Scott
 Foresman-Addison Wesley (SFAW)—accounted
 for 86% of all curriculum adoptions in Indiana
 during our study. All three were popular out
 side of Indiana as well and were used in other

 states, including California, Florida, Louisiana,
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 Large-Scale Evaluations of Curricular Effectiveness

 Tennessee, and Texas (Educational Marketer,
 1998a, 1998b, 1999a, 1999b). And two of the
 three remain popular today. The exception is
 SBG, which was bought by the publisher of
 SFAW and ultimately discontinued.

 Curriculum Descriptions

 The three curricula share similarities with

 other curricula that are widely circulated. For
 instance, Saxon and SBG both are best
 described as "traditional" in pedagogy. Both
 emphasize teacher-led instruction where stu
 dents receive step-by-step guidance for problem
 solving and are drilled in implementation.
 Singapore Math, a curriculum that is gaining
 popularity in schools across the United States,
 takes a similar pedagogical approach (WWC,
 2007). Alternatively, SFAW is best characterized
 as a blend of "traditional" and "reform" instruc

 tion. Reform-based curricula emphasize student
 inquiry, real-world applications of problems, and
 the use of visual aids for understanding.5 Recent
 research suggests that reform-based instruction
 can be highly effective (e.g., Riordan & Noyce,
 2001; WWC, 2007), and SFAW shares simi
 larities with popular reform-based curricula
 including Everyday Mathematics (WWC, 2007).

 There are many other differences between the

 curricula beyond the dimension of pedagogy,
 which we highlight in comparative reviews
 below. Our reviews draw on information from the

 WWC, the publishers themselves, several research
 studies, and a curriculum advocacy group (Mathe
 matically Correct).6 They reveal four main differ
 ences between the curricula: (a) Saxon presents
 related material in incremental units (distributive

 approach), whereas SBG and SFAW present
 related material in self-contained units (massed
 approach); (b) SBG structures lessons by inter
 weaving examples and student practice; (c) the
 "reform" elements of SFAW include an emphasis
 on real-world examples and conceptual under
 standing before technical details; and (d) Saxon
 does not cover some higher order topics covered
 by the other curricula.

 Saxon Math

 The WWC (2007) describes instruction to stu
 dents in Saxon Math as "incremental and explicit"
 and based on "teacher-directed conversations."

 Slavin and Lake (2008) similarly describe Saxon
 Math as "traditional" and "algorithmically
 focused." Saxon provides teachers with scripts for
 each lesson, and teachers are directed to structure

 daily lessons in three parts. First, teachers
 review prior concepts with students, usually
 through an interactive activity. Next they intro
 duce new concepts and teach students exact
 methods for solving problems. Finally, students
 practice solving problems in class. Students are
 assigned homework to be completed individually,
 and assessments are given every five lessons
 (Agodini, Harris, Atkins-Burnett, Heaviside, &
 Novak, 2010; Slavin & Lake, 2008). Continued
 practice and review is a key aspect of Saxon
 (Bolser & Gilman, 2003).

 A feature of the Saxon curriculum that dif

 ferentiates it from the other two curricula is its

 use of the distributed approach to presenting
 related material (Houghton Mifflin Harcourt
 Publishers, 2008; WWC, 2007). That is, for a
 given topic, instruction and assessment on the
 topic is distributed throughout the academic
 year in incremental phases, rather than in a sin
 gle setting. For instance, when students are
 taught how to tell time in Grade 2, they are first

 taught how to tell time to the hour, then move on
 to another subject, return back to time and learn
 half hour increments, move on, learn 5-minute

 increments, move on again, and finally learn
 how to tell time to the minute level.7 This is in
 stark contrast to how SBG and SFAW teach

 time—both use a massed approach where all
 concepts related to time are taught without
 interruption in a self-contained unit (Ellis,
 2006).

 SBG Mathematics

 SBG is also best classified as a traditional
 mathematics curriculum. A 1999 review from

 Mathematically Correct describes SBG as pro
 viding material to students in a structured way,
 similarly to Saxon.8 Teachers first introduce a
 topic to the class and students participate in small

 group or whole-class activities on the topic.
 Students are then tested using book problems.
 Teachers reassess student understanding with
 another activity, followed by student practice.

 While Saxon and SBG fall on the same end of

 the traditional/reform spectrum, three notable

 393
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 differences became apparent during our review.
 First, as noted above, SBG uses a massed approach
 to instruction, whereas Saxon uses a distributive

 approach. Second, SBG focuses more on group
 work and interweaves class or small group activi
 ties with individual practice. This is in contrast to
 presenting all examples upfront and then having
 students practice afterward.9 Finally, SBG pres
 ents higher order material for some topics that is

 not presented in Saxon. As an example, the Grade
 2 SBG curriculum covers addition and subtrac

 tion for three-digit numbers, whereas Saxon only
 covers addition and subtraction up to two-digit
 numbers.10

 SFA W Math

 SFAW offers a blend between the traditional

 and reform approaches to mathematics instruc
 tion. A traditional feature of the curriculum is

 that it encourages students to practice, although
 there are no "drills" per se. Instead, teachers
 are directed to structure lessons in a check

 learn-check-practice format. First, teachers
 check student knowledge about a particular
 concept, then introduce new concepts, then
 check their understanding, and then students
 practice problems from the text. The problems
 are designed to be real-world oriented in the
 reform-based mold. The organization of SFAW
 also highlights the "reform" aspect of the cur
 riculum. For example, when covering one-digit
 addition and subtraction, SFAW first devotes an

 entire unit to conceptual understanding and rec
 ognizing patterns, and then lays out strategies for
 problem solving, whereas SBG and Saxon teach
 problem-solving strategies upfront.

 The WWC report also indicates that the SFAW
 curriculum is well-designed for use by students of

 differing ability levels. Correspondingly, it covers
 higher order topics not covered by Saxon, simi
 larly to SBG. A final notable feature of SFAW is
 that it uses a variety of different instructional
 materials, including transparencies, workbooks,
 and technology (Agodini et al., 2010; Resendez &
 Manley, 2005; WWC, 2007)."

 Curriculum Selection Process in Indiana

 Curriculum adoptions occur annually in Indiana
 and rotate in 6-year cycles by subject. For example,

 Indiana's districts adopted new math curricula
 in 1998, 2004, and 2010. Similarly, recent read
 ing adoptions occurred in 1994, 2000, and 2006.
 We focus our evaluation on the math-curriculum

 adoption that occurred in 1998 and on adoptions
 in Grades 1,2, and 3.

 The adoption process has centralized and
 decentralized components. It begins in July of
 the year prior to the new adoption (for the cycle
 where the new curricula were first used in the

 fall of 1998, this was July 1997). First, there is
 a 4-month review of the curriculum options by
 an official Textbook Advisory Committee
 (TAC) at the Indiana Department of Education
 (DOE) (state level). By October, the TAC com
 piles a list of approved curricula and distributes
 this list to school districts. At this point, the
 review process becomes decentralized and var
 ies from district to district, but a common
 approach is for a district to form a committee of
 administrators, parents, and teachers to review
 the material and recommend a curriculum. The

 general public is also typically given an oppor
 tunity to comment. Overall, the district portion
 of the review process lasts for roughly 9 months
 and involves many individuals in different
 capacities. Each district makes a final decision
 in the summer before the new curricula are
 used in classrooms.12

 At the conclusion of the process, districts
 make one of three decisions. First, and most
 commonly, they choose to adopt one or more of
 the state-approved curricula. Second, they may
 apply to use alternative curricula that are not on

 the list, but this rarely happens in practice (e.g.,
 no more than 1 out of the roughly 300 districts
 chooses this option in any grade in our data).
 Third, districts can apply for "continued use"
 where they quite literally continue to use the old
 textbooks from the prior adoption cycle. Over
 98% of the districts in Indiana adopted new
 math curricula from the approved list during the
 1998 adoption cycle.

 III. Data

 We construct a 17-year data panel of schools
 and districts for our analysis. The data include
 information about curriculum adoptions along
 with detailed school- and district-level infor

 mation on student achievement, attendance,
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 Large-Scale Evaluations of Curricular Effectiveness

 enrollment, demographics, and financing. We
 perform our primary analysis at the school level.

 Our data panel starts with the 1991-1992
 school year and ends in 2007-2008. The curricula
 of interest were first used in schools in the fall of

 1998 and were replaced in the fall of 2004. We
 observe seven cohorts of Grade 3 students who

 were never exposed to the curricula during the pre

 period (1991-1992 through 1997-1998), one
 cohort that was exposed in Grade 3 only (1998
 1999), one cohort that was exposed in Grades 2
 and 3 only (1999-2000), four cohorts that used
 the curricula in all three grades and were thus
 "fully exposed" (2000-2001 through 2003-2004),
 one cohort that was exposed in Grades 1 and 2
 only (2004—2005), one cohort that was exposed in
 Grade 1 only (2005-2006), and two cohorts in the
 post period (2006-2007 and 2007-2008) that
 were never exposed. The key cohorts of interest
 are the cohorts that were directly exposed to the
 curricula that we evaluate. We use the unexposed
 cohorts to perform falsification tests, which allow

 us to investigate the extent to which our primary
 findings are likely to be biased (see Section VII).

 Our measure of achievement is the Indiana

 Statewide Testing for Educational Progress
 (ISTEP) exam. The ISTEP is a standards-based,
 criterion-referenced test administered in math

 and language arts. During most of our data
 panel, it was administered in Grades 3, 6, 8, and
 10 (more recently it has been given annually in
 Grades 3-8). The math ISTEP assesses student
 skills in the following areas: number sense,
 computation, algebra, geometry, measurement,
 and problem solving. Student scores on the
 ISTEP are reported in scale scores, and the tests
 are constructed to measure student knowledge
 of the core concepts and practices outlined in
 the Indiana DOE standards. Given that the DOE

 standards for mathematics are a major factor in
 the curriculum selection process and that the
 ISTEP is designed to test mastery of these stan
 dards, the test should be well suited to evaluate
 the relative effectiveness of the three curricula.13

 ISTEP scores are first available for analysis m
 Grade 3, and Grade 3 scores are a function of the

 curricula to which students are exposed in earlier

 grades as well. Therefore, our estimates are best
 viewed as characterizing the impacts of sequences
 of curriculum treatments. To allow for cleanly
 identified effects, we exclude districts that adopted

 more than one curriculum across Grades 1-3. To

 illustrate the assignment problem in such circum

 stances, consider a district that adopted Saxon in
 Grade 1 and SBG in Grades 2 and 3. In identifying
 the effect of Saxon relative to SBG, schools in this
 district are not well defined as either treatments or

 controls. We refer to districts that used the same

 curriculum in all three grades as "uniform curricu

 lum adopters." Restricting our analysis to these
 districts reduces our district sample size by 8% and

 our school sample size by 7% (see Appendix Table
 C.l). After restricting our sample, we are left with

 data from 213 districts and 716 schools. By a large
 margin, this makes our study the largest curricu
 lum evaluation of which we are aware.14

 In Table 1, we report differences in means
 across the schools and districts that adopted differ

 ent curricula prior to adoption (1997). There are
 only small differences in test scores and atten
 dance across curriculum adopters. There are larger
 differences in school demographics, district size,
 and to some extent, median household income.
 But even in some cases where the differences are

 statistically significant, they are substantively
 small. Overall, the descriptive statistics in Table 1

 are encouraging because the differences across
 curriculum adopters imply considerable overlap in
 the distributions of characteristics across treatment

 groups. This is a key condition for the successful
 implementation of our empirical strategy, which
 we discuss further in Section IV.

 A final data issue relates to the long duration of

 our study. Specifically, over the 17 years of our
 data panel, the composition of schools in Indiana
 changed to some degree (due to school closings).
 This issue will almost surely come up in other large

 scale curriculum evaluations given the typically
 long duration of implementation.15 The key issue is

 whether changes in the composition of schools are
 correlated with curriculum adoptions—if they are,
 they can introduce bias into the evaluation. We dis
 cuss this issue in detail in the appendix—we find no

 evidence to suggest that compositional changes in
 our sample over time bias our findings.

 IV. Empirical Strategy

 School-Level Matching Estimators

 We use school-level matching estimators to
 estimate the curriculum effects. Matching is an

 395
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 TABLE 1

 Average Characteristics of Schools and Districts, by Adopted Curriculum (1997 Values)

 School-level outcomes
 Attendance rate

 Grade 3 math test score

 Grade 3 language test score
 School-level characteristics

 Percent free lunch
 Percent reduced lunch

 Percent not fluent in English

 Percent language minority
 Percent White

 Percent Black

 Percent Asian

 Percent Hispanic
 Percent American Indian

 Enrollment (log)
 N (schools)

 District-level outcomes

 Attendance rate

 Grade 3 math test score

 Grade 3 language test score
 District-level characteristics

 Enrollment (log)
 Total per-pupil revenue (log)
 Local per-pupil revenue (log)

 Census information (district level)

 Median household income (logs)
 Share of population with low
 education

 N (districts)

 Sample Average Saxon SBG SFAW

 96.2

 496.6

 496.7

 27.4

 6.7

 1.2

 2.6

 91.3

 5.6

 0.7

 2.2

 0.2

 5.95

 716

 95.8

 498.1

 498.9

 7.72

 8.83

 7.24

 10.81

 18.2

 213

 96.3a

 496.5

 496.1

 24.7a'c

 7.1a

 0.7a

 1.8a

 95 4a,c

 2.3a'°

 0.4a,c

 1.8a'c

 0.1

 5.92

 311

 95.7°

 495.8°

 496.5ac

 7.60a,c

 8.81°

 7.18c

 10.8a,c

 18.8C

 124

 96.1

 494.2b
 495.8

 28.5"

 6.3a

 1.7a

 3.9a

 88.0a

 7.2a'b

 0.9a

 3.7a'b

 0.2

 5.97

 221

 95.8

 498. lab
 500.6a

 7.8a,b

 8.84

 7.24b

 10.8a-b

 19.2b

 56

 96.3

 499.7b
 498.7

 30.5°

 6.6

 1.2

 2.6

 88.4°

 9.2b'c

 1.1°

 l.lb'c

 0.2

 5.96

 184

 96. lc

 506.9°

 505.6°

 8.2b,c

 8.87°

 7.47b'°

 10.9b-°

 14.3b,c

 33

 SBG = Silver-Burdett Ginn; SFAW = Scott Foresman-Addison Wesley. The propensity-score specification also uses italicized
 information from 1998—differences in means for these years are not reported for brevity.
 'Indicates statistically significant difference at the 10% level between Saxon and SBG adopters.
 Indicates statistically significant difference at the 10% level between SBG and SFAW adopters.

 'Indicates statistically significant difference at the 10% level between Saxon and SFAW adopters.

 increasingly common empirical technique, and
 the conditions under which matching will iden
 tify causal treatment effects have been well-docu
 mented (Heckman, Ichimura, & Todd, 1997;
 Rosenbaum & Rubin, 1983). The key benefits
 of matching relative to simple regression analysis
 are (a) matching imposes weaker functional form
 restrictions and (b) matching resolves any
 "extrapolation" problems that may arise in
 regression analysis by limiting the influence of
 noncomparable treatment and control units in
 the data (Black & Smith, 2004).

 Briefly, the key assumption under which
 matching will return causal estimates of treat
 ment effects is the conditional independence
 assumption (CIA). The CIA requires potential
 outcomes to be independent of curriculum
 choice conditional on observables. Denoting
 potential outcomes by {Y0, Yp ... YK}, curricu
 lum treatments by De {0, 1, ... K}, and X as a
 vector of (pre-treatment) observable school- and
 district-level information, the CIA is written as:

 Y0,Yv...,Yk1D\X (1)
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 Conditional independence will not be satisfied
 if there is unobserved information that influences

 both treatment and outcomes. For example, if
 districts have access to information that is

 unobserved to the researcher, Z, such that
 P(D = k I X,Z) * P(D = k IX), and the addi
 tional information in Z influences outcomes,
 matching estimates will be biased.

 We match schools using an estimated
 propensity score (Rosenbaum & Rubin, 1983).
 Defining P. as the probability of choosing

 Pirn ~
 P.+P
 J "•

 j, we match schools by

 , where P. and P are estimated

 using a multinomial probit that simultaneously
 models the three treatment options (Lechner,
 2002). The propensity score is determined by a
 set of school and district covariates and

 described in further detail in the next section.

 We estimate average treatment effects (ATEs)
 for the three curricula using the pairwise
 comparison approach suggested by Lechner
 (2002). For example, for a comparison between
 curricula j and m, where 7 and Ym are outcomes
 for treated and control schools, respectively, we

 estimate ATEjm = E(Y. — Ym I D e {j,m}). We
 use kernel and local-linear-regression matching
 estimators (with the Epanechnikov kernel),
 which construct the match for each "treated"

 school using a weighted average of "control"
 schools, and vice versa. Prior research suggests
 that kernel matching should perform well in our
 context (Frolich, 2004).16 We estimate ATE-m
 by:

 X 00- 1 mj,m)YJ
 w jsNj^Sp m£lajnSp

 (2 X {y„ - 1 w(mJ)Yj}]
 j£'om™P

 In equation (2), A^ is the number of schools
 using j or m on the common support, S . I0■
 indicates the schools that chose m in the

 neighborhood of observation j, and I0m indicates
 the schools that chose j in the neighborhood of
 observation m. Neighborhoods are defined by a
 fixed bandwidth parameter obtained via
 conventional cross-validation (see Appendix A
 for details). W(j,m) and W(m,j) weight each

 comparison school outcome depending on its
 distance, in terms of estimated propensity scores,
 from the observation of interest. We omit a more

 detailed discussion of the matching estimators
 for brevity. More information about these and
 other matching techniques can be found in
 Heckman et al. (1997) and Mueser, Troske, and
 Gorislavsky (2007).17

 In addition to ATEs, average treatment-on
 the-treated effects (ATTs) may also be of interest.
 ATTs can provide important information if the
 curricula differentially affect different subgroups

 of schools. For example, consider a case where

 9j m = 0. This could occur even if schools that
 chose j were better off for having chosen j, and
 schools that chose m were also better off for

 having chosen tn. We allow for differential
 curriculum effects by estimating ATTs for all of

 the comparisons in both directions (i.e., ATTjm
 and ATTmj). We briefly discuss our findings in
 Section VI, but in general, we gain little
 additional insight from the ATTs.

 Finally, it is important to emphasize what a
 "curriculum effect" means in the context of our

 study. Of course, differences in content, pedagogy,

 and presentation will be reflected in our
 estimates, but so will other systematic differences

 in implementation across curricula. For example,
 if one curriculum is more amenable to teacher

 implementation, say by offering a more detailed
 teaching guide or providing more publisher
 support, our estimates will reflect this difference.
 As another example, Agodini et al. (2010) report
 that the average teacher using SFAW spends 4.8
 hours per week on mathematics instruction,
 whereas for Saxon the average teacher spends
 6.1 hours. Our estimates will capture differences
 along these lines as well.

 One way to describe our estimates is that
 they capture the "total treatment effects" of the
 curricula on mathematics instruction. In many
 circumstances, this is desirable, but in some
 cases, it may not be. For example, if more time
 on math instruction reduces time for other

 subjects, then there could be adverse consequences
 that would be missed by our estimates. In
 practice, we find little evidence to suggest that
 there are spillover effects, at least on reading
 scores, but conceptually it is important to
 recognize that our estimates will embody all of
 the systematic differences in math instruction
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 that come with the adoption of one of these
 curricula.

 Are Schools an Appropriate Unit of Analysis?

 We perform our analysis at the school level
 throughout, despite the fact that the official cur
 riculum orders come from districts. There are

 several benefits to our school-level approach
 over the district-level alternative. First, the
 sample of schools is much larger than the sam
 ple of districts. Matching is often described as a
 "data hungry" procedure, and a key benefit of
 the larger sample of schools is that it facilitates
 better matches (Zhao, 2004). An analogous dis
 trict-level analysis could be performed in prin
 ciple, and in fact, we do verify our findings are
 qualitatively similar if we match at the district
 level instead, but the school-level approach
 should result in higher quality matches and is
 conceptually preferred for this reason.

 Second, the CIA requires that we condition on
 all of the factors that determine curriculum selec

 tion and outcomes. As discussed above, the
 curriculum-selection process is complicated—the
 fact that districts mechanically place the orders
 does not mean that schools are not involved in

 the process. Performing our analysis at the school
 level allows us to directly control for school- and
 district-specific features, whereas it is not possi
 ble to do the reverse—for example, when we
 match districts, it is not straightforward to control
 for disaggregated characteristics of schools.

 Third, it is conceptually plausible that adminis
 trators focus on raising school-level achievement.
 Clearly, school-level administrators will have this

 focus, but district-level administrators may also
 evaluate district performance on a building-by
 building basis. If nothing else, our focus on school
 level performance is consistent with recent account

 ability targets at all levels (local, state, and federal).18

 Noting these benefits of the school-level
 approach, it is still important to acknowledge the
 role that districts play in the adoption process.
 Our matching procedure accounts for this role by
 matching schools in terms of district similarity as
 well (see Section V). In addition, the fact that
 schools within a district all move together creates
 a clustering structure in the data that cannot be
 ignored. Accordingly, we cluster our standard
 errors at the district level throughout the analysis.

 The school-level data are the most disaggre
 gated data available in Indiana, and for the above
 reasons, we argue that schools are the best units
 of analysis for our study. Still, the school-level
 variables are aggregated up from individual
 students, and the issue of aggregation bias mer
 its attention. We test for the importance of aggre

 gation bias in our study indirectly using the
 falsification exercise in Section VII. There, we
 show that our findings are not driven by aggre
 gation bias.19 A related and more general issue
 is in regard to cross-level inference about the
 efficacy of educational interventions (Burstein,
 1980). In our study, the key concern is that cur
 riculum effects may be different at different
 levels of analysis. For example, it would be
 inadvisable to use our estimates to gain infer
 ence about student-level curriculum effects. As

 a practical matter, our main findings can be
 replicated if we aggregate up to the district
 level, but the same may not occur if we could
 disaggregate down to the student level (although
 it is not clear that student-level inference would

 be conceptually desirable for curriculum inter
 ventions).20

 V. The Propensity Score

 Specification

 We use a multinomial probit (MNP) to esti
 mate the propensity scores for schools based on
 pre-adoption characteristics. Noting that the
 curricula of interest were first used in schools in

 the fall of 1998, the MNP includes information
 from the 1996-1997 and 1997-1998 school

 years. At the school level, we include controls
 for enrollment, demographics (race, free lunch
 status, and language status) and outcomes
 (Grade 3 test scores in math and language arts,
 and attendance) from 1996-1997, and analo
 gous controls for enrollment and demographics
 from 1997-1998. At the district level, we
 include enrollment, outcome, and finance con
 trols from 1996-1997, and enrollment and
 finance controls from 1997-1998. We also use

 district-level zip codes to assign Year 2000
 Census measures of local-area socioeconomic

 status to each school; namely, median house
 hold income and the share of adults without a
 high-school diploma. We treat these variables as
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 Large-Scale Evaluations of Curricular Effectiveness

 fixed-area characteristics. The list of covariates

 from the MNP is shown in Table 1.

 The propensity score model was constructed
 to include the relevant information available to

 schools and districts at the time of the adoption.
 For instance, we control for 1996-1997 school
 and district test scores to account for pretreat
 ment differences in achievement. But because

 the adoption decision was made by the summer
 of 1998, it is unlikely that decision makers had
 access to spring 1998 test scores, and conse
 quently we do not include these scores in the
 model (similarly, we omit annual attendance
 from 1997-1998). The model also reflects the
 variety of potential actors involved in the adop
 tion process. In addition to including school- and
 district-level controls, for example, the Census
 controls are included in acknowledgement of the
 role the local community can play in the adop
 tion process (see Section II).

 Although it is impossible to verify that the
 matching procedure includes all relevant fac
 tors, two pieces of evidence suggest that match
 ing performs reasonably well. First, our findings
 are not qualitatively sensitive to reasonable
 adjustments to the MNP, including the addition
 of the 1997-1998 outcome variables or the

 addition of more years of lagged test scores.
 Second, we perform falsification tests where we
 estimate curriculum "effects" for students who

 were not actually exposed to the curricula (see
 Section VII). If unobserved factors that are oth
 erwise unaccounted for in our models are driv

 ing our findings, we would anticipate estimating
 nonzero curriculum "effects" for the cohorts of

 unexposed students. The falsification tests pro
 vide no evidence to suggest that our primary
 estimates are biased by unobservables.

 Balancing

 In each comparison, we match treated and
 control schools based on the pairwise propensity
 scores and test for covariate balance.

 Balancing tests are motivated by Rosenbaum
 and Rubin (1983) and determine whether
 X _L D | P(D = K | X), a necessary condition if
 the propensity score is to be used to match
 schools.21 Although achieving covariate balance
 is important for any matching analysis that
 relies on a propensity score, there is no clearly

 preferred test for balance. Furthermore, in some

 cases, different balancing tests return different
 results (Smith & Todd, 2005). Given this
 limitation, we consider two different tests. The

 first is a regression-based test suggested by
 Smith and Todd (2005) that we perform
 separately for each pairwise comparison and for
 each covariate in each year. In the comparison
 between curricula j and m, we estimate:

 Xk=Po+ PiPjm + PiPjm + PiPjm + PtPjm

 + psD + ft * D * pjm + p7 * D * P]: + psD * PjJ (3)

 + P9*D*pjm, + e .

 In equation (3), Xk represents a covanate
 from the propensity-score specification, pjm is
 the estimated pairwise propensity score, and D
 indicates treatment. We test whether the coeffi

 cients P5~P9 are jointly equal to zero in each
 regression—that is, we test whether treatment
 predicts the Xs conditional on a quartic of the
 propensity score.

 The second test measures the absolute stan

 dardized difference in observables after match

 ing and was originally suggested by Rosenbaum
 and Rubin (1985). The formula for the absolute
 standardized difference for covariate Xk is given
 by:

 ijjs-i X wumx^}- X x ^-Wii
 SDIFF{ X.) = ^': , * 100

 'VarlXJ + VariX^) V V

 The numerator in equation (4) is analogous
 to the formula for our matching estimators in
 equation (2), where we replace Y with Xk and
 take the absolute value (note the denominator is
 calculated using the full sample). A weakness of
 using standardized differences is that there is
 not a clear rule by which to judge the results,
 although Rosenbaum and Rubin (1985) suggest
 that a value of 20 is large.

 Our MNP uses 32 school- and district-level

 covariates. Table 2 reports summary results
 from the balancing tests by comparison and
 year. From the regression tests, we report the
 number of covariates where the F test rejects
 the null hypothesis at the 5% or 10% level and
 the average p value across all F tests. We also
 report the average absolute standardized differ
 ence across all covariates.22 Table 2 shows that
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 TABLE 2  Balancing Details for the 32 Covariates Included in the Multinomial Probit Specification

 1992 1993 1994 1995 1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

 SBG to Saxon
 Number of unbalanced covariates  (p values below 0.05/0.10)  Average p value from  balancing tests, all covariates  Mean standardized difference

 SFAW to Saxon
 Number of unbalanced covariates  (p values below 0.05/0.10)  Average p value from  balancing tests, all covariates  Mean standardized difference

 SFAW to SBG
 Number of unbalanced covariates  (p values below 0.05/0.10)  Average p value from  balancing tests, all covariates  Mean standardized difference

 1/4 0/4 0/3  0.55 0.55 0.55  3.4 2.9 3.8  2/4 4/6 3/6  0.48 0.49 0.49  8.5 5.9 6.1  2/5 2/5 2/5  0.48 0.47 0.44  9.6 10.2 8.8

 0/2 0/2 0/2  0.55 0.55 0.55  3.9 3.3 3.5  4/6 3/5 3/6  0.48 0.50 0.49  6.2 6.1 6.0  2/5 1/3 0/4  0.46 0.51 0.50  9.3 9.3 9.2

 0/0 0/0 0/2  0.56 0.56 0.56  3.6 3.3 3.5  3/5 3/5 3/6  0.48 0.48 0.49  6.6 6.3 6.0  0/4 1/4 1/4  0.50 0.49 0.50  9.5 9.7 9.8

 0/1 0/0 0/0  0.56 0.57 0.58  3.3 3.0 3.7  5/5 3/5 4/5  0.44 0.45 0.46  7.2 7.6 7.4  0/4 0/4 0/4  0.52 0.54 0.54  10.1 10.6 10.6

 0/2 1/2 1/3  0.58 0.57 0.53  3.9 4.2 4.7  5/5 5/5 3/4  0.47 0.47 0.46  7.6 7.6 8.2  1/4 3/5 2/4  0.50 0.51 0.54  10.8 10.6 10.8

 SBG = Silver-Burdett Ginn; SFAW = Scott Foresman-Addison Wesley. Columns in italics are for years that are contiguous to the years from which the matching criteria are drawn. Results reported  using the samples of treatments and controls that are on the common support in each year for the kernel-matching estimators. The numbers of covariates that fail the balancing tests at the 5%  level are a subset of those that fail at the 10% level.
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 Large-Scale Evaluations of Curricular Effectiveness

 our comparison between SBG and Saxon is par
 ticularly well balanced. For our other compari
 sons, the covariates are less balanced, although it
 is not clear that the levels of imbalance are cause

 for concern. For example, although the average
 absolute standardized difference is larger in the
 comparisons involving SFAW, compared to
 other methodologically similar studies, the aver
 ages in Table 2 are quite reasonable.

 We also calculate the divergence between the
 densities of the estimated propensity scores for
 treated and control units. Intuitively, density
 divergence will affect the precision of the esti
 mates and can be generally informative about
 the extent to which the data environment is

 favorable for matching (the key issue being over
 lap in the distributions of observables). Similarly
 to the balancing tests, our analysis of density
 divergence suggests that the data conditions are
 most favorable in our comparison of SBG and
 Saxon. See Appendix A for details.

 VI. Results

 Table 3 presents the estimated curriculum
 effects for all Grade 3 cohorts who were ever

 exposed to the curricula of interest. Each cohort
 is labeled according to the year of its spring test
 (e.g., the 1998-1999 cohort is labeled "1999").
 All of the estimates are standardized using the
 distribution of student-level test scores.23 In

 addition to the matching estimators, we also
 report OLS estimates where we regress test
 score outcomes on the covariates used in the

 propensity score model and indicator variables
 for curriculum adoptions, retaining the pairwise
 comparisons. The standard errors for the match
 ing and OLS estimates are clustered at the dis
 trict level and the matching-estimator standard
 errors are bootstrapped with 250 repetitions.24

 Focusing first on our largest comparison
 between SBG and Saxon, and the estimates for
 the fully exposed cohorts (2001-2004), we find
 that SBG meaningfully outperformed Saxon. By
 averaging the kernel-matching estimates across
 these cohorts, we estimate that among the sam
 ple of schools that chose SBG or Saxon, the
 average effect of using SBG was roughly .13
 standard deviations of the test. Our estimates are

 also consistent with SFAW outperforming
 Saxon. There, we estimate an average effect of

 .06 standard deviations, although only two of
 the four estimates are statistically significant
 and the estimate from 2004 is particularly small.
 Our results also suggest, at least weakly, that
 SBG outperformed SFAW, although the esti
 mates are noisy enough that we cannot draw
 strong inference from this latter comparison.

 We also briefly consider the possibility that
 treatment effects depend on treatment status. In
 unreported results, we estimate ATTs for each
 comparison and in each direction. In our com
 parison between SBG and Saxon, the treatment
 effects do not depend on treatment status, and
 similarly for our comparison between SFAW
 and SBG (although again, these estimates are
 noisy). Only in our comparison between SFAW
 and Saxon do we find any evidence of differen
 tial effects—Saxon appears to perform less
 poorly relative to SFAW at schools that actually
 chose Saxon. Nonetheless, even our estimates of

 A TTSaxon SFAw suggest that schools that chose
 Saxon would have been better off had they
 instead chosen SFAW.

 The magnitudes of the curriculum effects are
 economically meaningful, particularly when
 weighed against the marginal costs of choosing
 one curriculum over another. For instance, Fryer
 and Levitt (2006) show that between Grades 1
 and 3, the black-white achievement gap grows
 at a rate of approximately .10 standard devia
 tions per year. Contrasting this estimate with the
 results from our most compelling comparison
 suggests that choosing SBG over Saxon has an
 effect that is equivalent to roughly 1 year's worth

 of expansion of the black-white achievement
 gap.25 Given that curricula tend to be similarly
 priced (the texts from Saxon, SBG, and SFAW,
 averaged over Grades 1-3, were $23.08, $24.80,
 and $25.34, respectively), selecting a better cur
 riculum appears to be a cost-effective way to
 improve student achievement.26

 Next, we turn to the partially exposed cohorts.
 One common theme is that the point estimates
 for the 2005 and 2006 cohorts are generally
 larger than for the 1999 and 2000 cohorts. An
 explanation is that there are familiarity issues
 related to curriculum implementation. For
 example, students who used the curricula when
 the curricula were first introduced may have had

 a different experience than the students who
 used the curricula toward the end of the adoption
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 TABLE 3  Estimates of Math Curricular Effectiveness on Grade 3 Math Test Scores for Partially and Fully Exposed Grade 3 Cohorts, All Comparisons  Treatment: SBG  Control: Saxon
 OLS  Kernel matching  LLR matching

 Treatment: SFAW  Control: Saxon
 OLS  Kernel matching  LLR matching

 Treatment: SFAW  Control: SBG
 OLS  Kernel matching  LLR matching

 JV(Saxon)  JV(SBG)  A^SFAW)

 1999 2000 2001 2002 2003 2004 2005 2006
 0.041 (0.035)

 0.055 (0.034)

 0.120(0.032)**

 0.117 (0.029)**

 0.127 (0.034)**

 0.096 (0.047)*

 0.100 (0.035)**

 0.078 (0.034)*

 0.048 (0.046)

 0.065 (0.049)

 0.135 (0.043)**

 0.132 (0.034)**

 0.136(0.039)**

 0.100 (0.049)*

 0.108 (0.044)**

 0.078 (0.041)'

 0.051 (0.061)

 0.059 (0.052)

 0.135 (0.040)**

 0.131 (0.040)**

 0.135 (0.043)**

 0.098 (0.053)'

 0.105 (0.047)*

 0.080 (0.042)'

 0.043 (0.040)

 -0.004 (0.046)

 0.064 (0.035)t

 0.086 (0.032)**

 0.071 (0.037)'

 0.005 (0.043)

 0.037 (0.035)

 0.057 (0.037)

 0.039 (0.056)

 0.003 (0.063)

 0.073 (0.054)

 0.089 (0.040)*

 0.092 (0.042)*

 -0.015 (0.042)

 0.038 (0.064)

 0.047 (0.058)

 0.042 (0.082)

 0.046 (0.091)

 0.057 (0.075)

 0.097 (0.051)'

 0.102 (0.068)

 0.012 (0.081)

 0.029 (0.083)

 0.044(0.110)

 0.003 (0.033)

 -0.054 (0.042)

 -0.034 (0.040)

 -0.061 (0.043)

 -0.097 (0.056)'

 -0.098 (0.058)'

 -0.062 (0.044)

 -0.026 (0.043)

 -0.029 (0.084)

 -0.081 (0.093)

 -0.056 (0.078)

 -0.054 (0.060)

 -0.113 (0.066)'

 -0.099 (0.073)

 -0.071 (0.081)

 -0.046 (0.077)

 -0.024 (0.217)

 -0.078 (0.181)

 -0.051 (0.222)

 -0.040 (0.296)

 -0.103 (0.122)

 -0.085 (0.079)

 -0.055 (0.165)

 -0.051 (0.247)

 309

 307

 307

 305

 300

 294

 286

 287

 220

 219

 219

 213

 213

 212

 210

 207

 184

 182

 182

 181

 176

 174

 169

 163

 SBG = Silver-Burdett Ginn; SFAW = Scott Foresman-Addison Wesley; OLS = Ordinary Least Squares; LLR = Local Linear Regression. Bolded columns are for the fully-exposed cohorts. Matching estimators impose  the common support restriction. Standard errors in parentheses are clustered at the district level for all estimates, and bootstrapped using 250 repetitions for the matching estimators. N(Saxon) refers to the number of  schools in our sample that use Saxon, and similarly for N(SBG) and N(SFAW).  **p<.01. *p<.05. ><.10.
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 Large-Scale Evaluations of Curricular Effectiveness

 cycle.27 The curricula may also have had legacy
 effects on instruction, which would have
 affected the 2005 and 2006 cohorts even as they
 transitioned out of the adoption cycle.

 An issue with interpreting the estimates from

 the partially exposed cohorts is that these stu
 dents were also exposed to other curricula in
 other adoption cycles, and this may attenuate the
 estimates. The degree of attenuation will depend
 on the extent to which curriculum quality is cor
 related across adoption cycles for treatment and
 control schools. We explore this issue to the
 extent possible in Table 4, where we compare
 curriculum adoptions for Grades 1-3 in the 2004
 adoption cycle across uniform adopters from
 1998 (we do not observe math curriculum adop
 tions prior to 1998; therefore, we cannot exam
 ine across-cycle adoptions in earlier periods).

 Table 4 shows adoption shares in 2004 for
 the four most popular curricula from that adop
 tion cycle. Saxon adopters in 1998 were much
 more likely to adopt Saxon in 2004, but adopt
 ers of the other two curricula are dispersed
 across alternative options. Without knowing the

 respective qualities of the different curricula
 adopted outside of the 1998 adoption cycle, it is
 difficult to form expectations based on the pat
 terns in Table 4. Ultimately, given the potential
 for attenuation in the estimates for the partially

 exposed cohorts and the sizes of our standard
 errors, we cannot make strong inference about
 partial-exposure curriculum effects.

 Another interesting aspect of Table 4 is that
 it shows the changing market shares of curricu
 lum publishers over time in Indiana. Saxon,
 despite its relative underperformance in our
 analysis, maintained its near 50% market share
 in 2004. Although we found SBG was the most
 effective curriculum during the 1998 adoption
 cycle, it did not appear in 2004. The publisher of
 SBG was bought by Pearson Publishing, and
 Pearson phased out SBG in favor of SFAW,
 which it also publishes. SFAW's market share
 fell from roughly 15% to 9%.

 Overall, our most reliable estimates come
 from the four fully exposed cohorts. In our most

 compelling comparison, we find that SBG out
 performed Saxon by a substantial margin. Both
 of these curricula share the same basic peda
 gogical approach (traditional). With researchers
 and policymakers placing so much emphasis on

 differences between the traditional and reform

 pedagogies, our findings serve as a reminder that
 other differences should not be overlooked. Our

 analysis also suggests that SFAW somewhat out
 performed Saxon; and if anything, SBG outper
 formed SFAW, although inference from the latter

 comparison is clouded by statistical imprecision.
 Finally, we show that Saxon's market share did
 not diminish in the next adoption cycle, despite
 our finding of relative underperformance during
 the 1998 cycle. One explanation is that educa
 tional administrators do not have reliable evi

 dence on curricular effectiveness.28

 VII. Falsification Tests

 Matching estimators will not return causal
 estimates if conditional independence is violated,
 and there are a number of ways that this could
 occur in our study. For example, there could be
 systematic differences in teacher or administrator
 quality across different curriculum adopters. If
 these differences are correlated with the curricu

 lum adoptions and student achievement but poorly

 proxied for by the controls in the propensity
 score model, they could introduce bias. Or if
 there are differences across adopters with
 respect to mathematics instruction—perhaps in
 districts' general commitments to mathematics—
 that are not driven by the curricula themselves,
 this could bias our estimates. A third possibility is

 that curriculum adoptions in other subjects (like
 reading) may be correlated with math adoptions
 and math achievement.29 Any of these factors, or

 many others, could potentially bias our findings.
 While it is impossible to exhaustively con

 sider all possible sources of bias, we provide
 evidence about the general reliability of our find

 ings using two types of falsification tests. First,
 we estimate curriculum effects on test scores for
 cohorts of students who never used the curricula

 of interest. The logic of these tests can be illus
 trated with an example. Suppose that there are
 unobserved differences across adopters in terms

 of teacher quality and that these differences
 affect student achievement but are not well

 proxied for by any of our conditioning vari
 ables. This would lead to bias in the estimated
 curriculum effects. But the bias should not be

 unique to the years in which the curricula were
 actually used in schools. For example, if schools
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 TABLE 4

 Average 2004 Curriculum Adoptions in Math by District for the Four Most Common Curricula From the 2004

 Adoption Cycle

 1998 Uniform Math Adoptions—Grades 1
 Through 3

 All  Saxon  SBG  SFAW  Other

 2004 math adoptions

 Grade 1

 Saxon  0.48  0.76  0.25  0.12  0.21

 Harcourt  0.19  0.07  0.32  0.35  0.24

 Houghton Mifflin  0.10  0.06  0.11  0.21  0.15

 SFAW  0.09  0.07  0.07  0.15  0.18

 Grade 2
 Saxon  0.48  0.77  0.25  0.09  0.24

 Harcourt  0.19  0.08  0.32  0.35  0.21

 Houghton Mifflin  0.10  0.06  0.11  0.21  0.15

 SFAW  0.09  0.05  0.07  0.18  0.18

 Grade 3

 Saxon  0.48  0.76  0.23  0.09  0.24

 Harcourt  0.18  0.08  0.32  0.35  0.21

 Houghton Mifflin  0.12  0.07  0.14  0.21  0.15

 SFAW  0.09  0.06  0.05  0.21  0.15

 N  286  128  57  34  33

 SFAW = Scott Foresman-Addison Wesley; SBG = Silver-Burdett Ginn. N indicates the number districts where we observe a
 2004 math-curriculum adoption and at least one Grade 3 math test score between 1998 and 2008. The "other" category includes
 all districts that did not adopt any of the "big three" curricula in any grade during the 1998 adoption cycle. Districts that adopted

 at least one of the big three curricula nonuniformly during the 1998 adoption cycle are included only in the "all" category.

 that chose SBG also have stronger teachers,
 then the effects of these teachers should be vis

 ible before the curricula that we evaluate were

 ever adopted. The confounding factor (teacher
 quality) will manifest itself in the form of non
 zero curriculum "effects" even for cohorts of

 students who never used the curricula that we

 evaluate. In contrast, curriculum "effect" esti
 mates that are close to zero for unexposed
 cohorts would suggest that it is the curricula
 themselves, and not other differences across
 curriculum adopters, that are driving our results.

 We also provide a second set of falsification
 tests by estimating math-curriculum effects on
 reading achievement for students who were and
 were not exposed to the curricula of interest. For
 the out-of-cycle cohorts, we again expect to
 estimate "effects" that are statistically indistin
 guishable from zero if our main findings are
 unbiased. For students who actually used the
 math curricula of interest, timing does not rule

 out the possibility of causal spillover effects on
 reading scores. However, at most we would
 expect only small spillover effects.30

 We first estimate curriculum "effects on

 math test scores for cohorts of Grade 3 students

 from 1992 through 1996, and 2007 and 2008.
 For brevity, we only report estimates using ker
 nel matching (Epanechnikov kernel). The results
 are reported in Table 5, with the most convincing
 estimates coming from the 1992-1996 cohorts
 that passed through schools prior to the 1998
 adoption cycle. All of the falsification estimates
 are small and statistically indistinguishable from
 zero, with the exception of the SFAW-Saxon
 comparison in 1992. Furthermore, the precision
 of the estimates is very similar to the precision of
 our main estimates in Table 3. These results do

 not provide any indication that our primary find
 ings are biased by unobserved selection.

 The 2007 and 2008 cohorts in Table 5 were

 not exposed to the curricula of interest either;
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 TABLE 5  Falsification Estimates of Math Curricular Effectiveness, Estimated Using Math Test Scores for Grade 3 Cohorts Who Were Never Exposed to the Curricula of Interest,  All Comparisons

 1992 1993 1994 1995 1996 2007 2008

 Treatment: SBG  Control: Saxon

 Kernel matching -0.040(0.037) 0.024(0.045) -0.006 (0.040) 0.026 (0.045) 0.031 (0.043) 0.030 (0.039) 0.067 (0.044)
 Treatment: SFAW  Control: Saxon

 Kernel matching -0.108 (0.053)* -0.015 (0.057) -0.004(0.048) -0.012 (0.061) -0.015 (0.050) -0.007(0.052) -0.018 (0.095)
 Treatment: SFAW  Control: SBG

 Kernel matching -0.056 (0.090) 0.025 (0.091) 0.011 (0.078) 0.024(0.097) -0.022 (0.092) -0.049(0.067) -0.082 (0.092)  jV(Saxon) 301 304 304 306 308 284 280  MSBG) 209 210 213 216 220 205 201  jV(SFAW) 179 179 182 182 182 163 162  SFAW = Scott Foresman-Addison Wesley; SBG = Silver-Burdett Ginn. Matching estimators impose the common support restriction. Standard errors in parentheses are clustered at the district level and bootstrapped  using 250 repetitions.  **p<.01.
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 Bhatt and Koedel

 however, their outcomes are observed after the
 adoption cycle we study. This leaves open the
 possibility of nonzero treatment effects, which
 limits inference to some degree. But even so,
 none of the estimates from 2007 or 2008 are

 statistically significant.
 In Table 6, we estimate math-curriculum

 effects on reading scores for all cohorts. Students

 in the cohorts from 1992 through 1996, and
 2007 and 2008, were never exposed to the cur
 ricula of interest. The other cohorts were exposed,
 and it is unclear a priori whether we should
 expect any across-subject spillover effects.
 Although we do not have a strong prior about
 whether math curricula affect reading outcomes,
 one straightforward expectation is that their
 effects on math test scores should be larger than
 their effects on reading test scores. The results
 in Table 6 confirm this basic intuition: The point
 estimates are generally small, and only one is
 statistically significant (in the comparison
 between SBG and Saxon in 2002).31

 Finally, note that all of our falsification esti
 mates use data aggregated to the same level as
 in our main analysis (schools). If our main results
 were subject to aggregation bias, this same bias
 should be reflected in the falsification estimates

 as well. We find no evidence of this, suggesting
 that our findings are not driven by aggregation
 bias.32

 VIII. Conclusion

 We use a unique administrative data panel from
 Indiana to compare the effectiveness of three
 elementary-mathematics curricula. We measure
 curriculum effects using test scores on the Indiana
 state test (the ISTEP). Our results indicate that
 there are substantial differences in effectiveness

 across the three curricula and, in particular,
 between the two curricula that held the largest
 market shares in the state during our study.

 Our research makes two contributions to the

 literature. First, we show that important differ
 ences in curricular effectiveness can exist

 between curricula that share the same pedagogi
 cal approach. Specifically, we find that during
 the 1998-2004 adoption cycle in Indiana, the
 SBG curriculum meaningfully outperformed the
 Saxon curriculum, and both curricula are best
 characterized as traditional in pedagogy. This

 suggests that other differences between these cur

 ricula, and other curricula more generally, are
 important determinants of achievement and merit

 attention from researchers and policymakers.
 Our study also provides a template for how

 similar studies in other states could be per
 formed. The thinness of the empirical literature
 on curricular effectiveness is striking, and the
 most prominent obstacle in the way of producing
 more studies is the lack of data. Currently,
 Indiana is one of only two states of which we are
 aware that collects and makes curriculum

 adoption information available, and many states
 do not collect data at all. Such data would be

 cheap and easy to collect, particularly compared
 to other data elements in many state longitudinal
 systems, and could be used to learn much about
 this important educational resource.

 One advantage of having more studies on
 curricular effectiveness is that they can be used
 to examine how different curricula perform in
 different contexts. Unlike some other educa

 tional interventions, curricula are used by vir
 tually all students in all schools. This implies
 considerable heterogeneity in the contexts in
 which curricula are used; both in terms of the
 actors involved (students and teachers) and
 potentially the objectives of the intervention
 (e.g., differences in standards across states or
 school districts). The right curriculum in one
 circumstance may not be right in another. As a
 specific example, Agodini et al. (2010) find that
 Saxon outperforms SFAW, while our findings
 suggest the opposite (weakly). An important
 contextual difference is that Agodini et al. ana
 lyze schools where students are significantly
 more disadvantaged than students in the typical
 Indiana school.33 It may be inadvisable for a
 disadvantaged school district to choose SFAW
 (or perhaps SBG) based on our study, or alterna
 tively, for an advantaged district to choose
 Saxon based on the Agodini et al. study.34 But
 both studies provide valuable information for
 administrators in the right context. More gener
 ally, the current sparseness of the literature
 makes it difficult for educational administrators

 to make informed curriculum-adoption deci
 sions. But if the literature were expanded, pat
 terns would emerge across multiple studies that
 would allow us to determine which curricula are
 most effective in which circumstances.35
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 TABLE 6  Estimates of Math Curricular Effectiveness, Estimated Using Reading Test Scores for All Grade 3 Cohorts, All Comparisons

 1992

 1993

 1994

 1995

 1996

 1999

 2000

 2001

 2002

 2003

 2004

 2005

 2006

 2007

 2008

 Treatment: SBG  Control: Saxon

 Kernel Matching

 -0.051

 -0.012

 -0.026

 0.028

 0.045

 0.053

 0.062

 0.064

 0.076

 0.050

 0.028

 0.009

 0.014

 -0.028

 0.023

 (0.037)

 (0.043)

 (0.043)

 (0.043)

 (0.047)

 (0.047)

 (0.049)

 (0.049)

 (0.04l)f

 (0.040)

 (0.042)

 (0.049)

 (0.041)

 (0.039)

 (0.039)

 Treatment: SFAW  Control: Saxon
 Kernel Matching

 -0.067

 -0.042

 -0.035

 -0.051

 -0.054

 0.008

 0.016

 0.012

 -0.015

 0.012

 -0.010

 -0.027

 0.061

 0.010

 0.028

 (0.052)

 (0.059)

 (0.058)

 (0.069)

 (0.059)

 (0.069)

 (0.079)

 (0.073)

 (0.053)

 (0.059)

 (0.068)

 (0.068)

 (0.069)

 (0.068)

 (0.071)

 Treatment: SFAW  Control: SBG

 Kernel Matching

 -0.008

 0.049

 0.039

 0.003

 -0.060

 -0.057

 -0.048

 -0.055

 -0.074

 -0.042

 -0.031

 -0.006

 0.027

 0.022

 -0.005

 (0.098)

 (0.102)

 (0.090)

 (0.096)

 (0.096)

 (0.093)

 (0.107)

 (0.096)

 (0.082)

 (0.086)

 (0.071)

 (0.099)

 (0.100)

 (0.087)

 (0.101)

 W(Saxon)

 301

 304

 304

 306

 308

 309

 307

 307

 305

 300

 294

 286

 287

 284

 280

 iV(SBG)

 209

 210

 213

 216

 220

 220

 219

 219

 213

 213

 212

 210

 207

 205

 201

 iV(SFAW)

 179

 179

 182

 182

 182

 184

 182

 182

 181

 176

 174

 169

 163

 163

 162

 SFAW = Scott Foresman-Addison Wesley; SBG = Silver-Burdett Ginn. Bolded columns are the fully-exposed cohorts. Matching estimators impose the common support restriction. Standard errors in parentheses are  clustered at the district level and bootstrapped using 250 repetitions. +p < .10
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 Notes

 1. Textbooks are just one component of the curri
 cula purchased by schools from publishers. Other
 materials include teacher instructional support services

 and supplementary materials such as student work
 books and solution manuals.

 2. Note that some of these are inactive or discontin

 ued, but nonetheless, many active options are available.

 3. An alternative explanation is that educational
 administrators do not consistently make optimal deci
 sions in general. For example, see Ballou's (1996)
 study on teacher hiring.

 4. We focus on this adoption cycle to maximize the
 number of cohorts whose achievement data we observe.

 5. Further discussion can be found in Agodini et al.
 (2010), National Mathematics Advisory Panel (2007,
 2008), and An (2004). These sources describe what is
 perhaps best viewed as a continuum of curriculum
 options with endpoints at "purely traditional" and "purely
 reform." Most curricula fall somewhere in between.

 6. The information that we obtained from the

 WWC and the research literature is likely the most
 objective. The information from the publishers and
 Mathematically Correct is likely the least objective.
 We try to avoid carrying over subjective curriculum
 descriptions when we can. Note that in some cases
 the reviews are for different editions of the curricula;
 however, we expect within-curriculum, across
 edition differences to be small.

 7. Prior research suggests that the distributed
 approach increases the amount of information that
 students retain and understand (Bloom & Shuell,
 1981; Rea & Modigliani, 1985).

 8. We had difficulty obtaining information about
 the SBG curriculum because it has been discontin

 ued. We primarily draw on Mathematically Correct,
 an advocacy group in favor of traditional-based math

 ematics instruction, for our review here. Mathematically
 Correct is not an objective source, but we do our best
 to pull only objective information. We also note that

 any bias from Mathematically Correct's pedagogical
 preference is less likely to be an issue when compar
 ing Saxon and SBG since both are traditionally
 based. More information is available at www.mathe

 maticallycorrect.com.

 9. Previous research shows that interspersing
 examples with practice is an effective organizational
 tool for student learning (Sweller & Cooper, 1985;
 Trafton & Reiser, 1993).

 10. The current edition of Saxon Math covers
 three-digit addition and subtraction, however the edi
 tion studied here did not (Saxon, 2011).

 11. Several studies suggest that combining verbal
 descriptions with visual aids is an effective instruc
 tional practice (Mayer, 2001; Mayer & Moreno, 1998).

 12. For an example of a district review process, see
 www.munster.k 12.in.us/ParentHandout.pdf

 13. Perhaps the most Indiana-specific feature of
 our study is that we measure outcomes using the
 ISTEP. Our results may not extend to settings where
 the testing instrument differs a great deal from the
 ISTEP, although we note that the core concepts that
 are tested on the ISTEP are common math concepts
 nationally.

 14. The largest experimental study of which we are
 aware is by Agodini et al. (2010), which examines
 four curricula in over 100 schools. More typically,
 experimental studies cover just a handful of schools
 (e.g., Borman, Maritza Dowling, & Schneck, 2008).

 15. As noted above, the adoption cycles in Indiana
 last for 6 years. Adoption cycles in Florida also last
 for 6 years.

 16. Caliendo and Kopeinig (2005) suggest local
 linear regression (LLR) is useful when controls are
 distributed asymmetrically around treated observa
 tions. Frolich (2004) notes that LLR performs worse
 in regions of sparse data, which is consistent with the

 large standard errors that we estimate using LLR in
 our comparisons with less density overlap (see Table
 3 and Appendix A).

 17. In unreported results, we show that our findings

 are robust to the use of alternative matching estimators.

 This includes simple pair matching and radius matching

 using various radii and regression-adjusted and weight
 ing estimators (see Imbens, 2004; Millimet & Tchernis,
 2009, for discussions of weighting estimators).

 18. Federal legislation like No Child Left Behind is
 targeted at the school level. But even in other areas,
 like teacher accountability, recent work points to the

 use of school-level performance measures as being
 desirable (Ahn & Vigdor, 2011).

 19. Hanushek, Rivkin, and Taylor (1996) show that
 aggregation leads to upward bias in the estimated
 effects of educational interventions in multistate stud

 ies where state information is omitted. Within state,
 the effect of aggregation bias is ambiguous.

 20. There is a large literature that discusses how
 inference can be confounded across levels of aggrega
 tion in educational research (for example, see Burstein,
 1980; Hanushek et al., 1996; Raudenbush, 1988;
 Raudenbush & Bryk, 1986). To illustrate the potential
 problems with cross-level inference in the present
 study, consider a comparison between student-level
 and school-level curriculum effects. Hypothetically,
 one could imagine estimating the student-level effect
 of SBG from a classroom where students used differ

 ent curricula. The student-level effect may be different
 than the school- or classroom-level effect because

 SBG involves group work. Because curricula are
 group-level interventions, student-level curriculum
 effects seem conceptually unappealing.
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 Large-Scale Evaluations of Curricular Effectiveness

 21. The MNP results are omitted for brevity but
 available upon request. To provide a sense of the
 predictive power of the covariates, we estimate sepa
 rate linear-regression models for each curriculum
 comparison. The dependent variable indicates the
 adoption of one of the curricula, and the independent
 variables are the covariates from the MNP. Within

 comparison pairs, the covariates explain 23% to 42%
 of the variability in curriculum adoptions.

 22. These reporting measures are somewhat stan
 dard in the literature (e.g., see Sianesi, 2004; Smith &
 Todd, 2005), but in summarizing the information,
 some details are lost. Appendix Table B.l reports
 balancing results for all 32 covariates in each com
 parison for a single year of our data (2002) to illus
 trate covariate balance more fully.

 23. Our outcome data are reported at the building
 level. Appendix Table C.2 shows how we scale our
 estimates so that they are in the metric of the student
 level distribution of scores.

 24. We obtain the optimal number of bootstrap
 repetitions following Ham, Li, and Reagan (2006).
 We resample entire districts. Abadie and Imbens
 (2006) show that bootstrapping cannot be used to
 obtain standard errors for nearest neighbor matching
 estimators, but their result does not apply to smoother
 estimators like those used here.

 25. Fryer and Levitt (2006) analyze a different test
 ing instrument; however, similar estimates of the
 Black-White achievement gap spread are available
 elsewhere (see, e.g., Chubb & Loveless, 2002).

 26. Certainly, the short-term achievement effects
 are notable, but a qualification is that we do not know
 whether curriculum effects persist over time. Recent
 evidence in other contexts raises concerns about the

 general persistence of educational interventions (e.g.,
 Jacob, Lefgren, & Sims, 2008; U.S. Department of
 Health and Human Services, Administration for
 Children and Families, 2010). Earlier versions of this
 work attempted to evaluate the persistence of curricu
 lum effects; however, there are too many potentially

 confounding factors to draw conclusions from the
 Indiana data. This is an area for future research.

 27. We cannot directly test for familiarity effects
 among the partially exposed cohorts because differ
 ences in familiarity as the curricula are phased in are
 confounded by differences in exposure by cohort.

 28. We cannot rule out that Saxon does not per
 form better on tests in different grades. We base our
 conclusion on our findings for Grade 3 achievement
 during this particular adoption cycle. That said, it is
 likely that Grade 3 was closely tracked by school
 administrators during our data panel since Grade 3 was
 the only tested grade in most elementary schools prior
 to No Child Left Behind. In Section VIII, we discuss

 how our results may not extend to other contexts, such

 as in settings where the student population differs from

 the student population in Indiana.

 29. In fact, we directly tested for this particular pos

 sibility by estimating the correlations between reading
 adoptions and math achievement (nonzero correla
 tions are a prerequisite if reading adoptions are to be a
 relevant omitted variable). Even unconditionally,
 reading adoptions do not predict math achievement.

 30. Potentially confounding both types of falsifica
 tion estimates are correlations in adoptions across
 grades, subjects, and cycles. In theory, these correla
 tions will push our falsification estimates to be dif
 ferent from zero, but in practice, any confounding
 effects are not strong enough to limit inference. One
 reason that across-cycle correlations in curriculum
 adoptions are unlikely to bias our findings is that we
 match schools based on 1997 achievement (among
 other things), and 1997 achievement includes curric
 ulum effects from the prior adoption cycle.

 31. We also consider how a pure-bias interpretation
 of the reading estimates would impact our results by
 assuming that across-subject spillover effects are zero.
 To do this, we estimate math-curriculum effects on
 schools' detrended math test scores, where we detrend

 using reading scores (standardized throughout). We
 omit the estimates for brevity, but they are in line
 with what would be expected by subtracting the
 stand-alone reading estimates from the stand-alone
 math estimates. The estimates from Table 3 that are

 statistically significant for our comparisons between
 SBG and Saxon, and SFAW and Saxon, remain statis
 tically significant in the detrended analysis. In the
 comparison between SFAW and SBG, the curricula
 are not statistically distinguishable using the
 detrended estimates.

 32. We show results from an additional set of falsi

 fication tests in Appendix B from cohorts of Grade 6
 students who were never exposed to the curricula of
 interest (cohorts from 1993-2001). The estimates in
 the appendix are qualitatively consistent with the
 other falsification findings.

 33. The average share of students on free/reduced

 price lunch in the schools in Agodini et al. (2010) is
 50%; in our study, it is 27%. Schools in their study
 are, on average, 38.5% White; in our study, the White
 share is over 90%. Also, they find that Saxon outper
 forms SFAW in Grade 2; our findings are for Grade 3.

 34. We attempted to directly examine the role of
 student disadvantage as a cause of the discrepancy in
 findings across studies but could not construct a large
 enough sample of Indiana schools that matched the
 level of disadvantage in the Agodini et al. (2010)
 study. Based on what we could ascertain from our
 supplementary analysis, however, differences in student
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 disadvantage appear to explain some of discrepancy
 between studies. This hypothesis is further sup
 ported by comparing the findings in Wave 1 and
 Wave 2 of the Agodini et al. study. The sample of
 schools in Wave 1 of the experiment was more disad
 vantaged than the sample in Wave 2, and the differ
 ences that they document between Saxon and SFAW
 are smaller in the second wave (and significant only
 in Grade 2—see Agodini et al., 2009 and 2010).

 35. Virtually every study has contextual features
 that limit external validity to some degree (see
 Schoenfeld, 2006, for a general discussion of contex
 tual issues in curriculum evaluation). The two most
 prominent Indiana-specific features in our analysis are
 the students and the test. We would expect our find
 ings to carry over well for states that use tests similar

 to the 1STEP, but perhaps not elsewhere. And our
 findings may not extrapolate well to states or regions
 where the population differs greatly from Indiana,
 which is a fairly rural state and, as noted in the text,

 relatively advantaged (relative to both the Agodini
 et al. sample and the nation as a whole). A third issue
 is that our analysis is based entirely on Grade 3 test
 scores, and it is not clear how our results would repli
 cate in other grades. All of these issues point back to
 the larger problem that the literature on curricular
 effectiveness is so thin—more studies from more

 states and more grades would be greatly informative.
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