Update

Making Students Visible: Comparing Different Student Subgroup Sizes for Accountability

Summary and policy implications

In May 2016, we released a policy memo comparing the effect of reporting subgroups at an nsize of $20+$ compared to $100+$. In response to this original memo, the U.S. Department of Education released a rule notice proposing changes to ESSA regulation §200.17 allowing states "to establish a range of n-sizes, not to exceed 30 ." To support state-level policymaking under these new requirements, this update to the original policy memo will illustrate the trade-offs between subgroup sizes of $20+$ and $30+$. In this supplementary analysis, we show that:

- The effect of moving from a subgroup size of $30+$ to $20+$ is not as stark as the effect of moving from a subgroup size of $100+$ to $20+$. However, substantially more students are made visible at a subgroup size of $20+$ as compared to $30+$, suggesting that $20+$ may be more advantageous for highlighting the performance of specified subgroups.
- A substantially higher percentage of student data is reported at smaller subgroup sizes. For example, when the subgroup size is reduced to $20+$ from $30+$, 39 percent more schools report results for students with disabilities.
- At a subgroup size of 20+, approximately 38 percent more schools report results for all student subgroups than at a subgroup size of $30+$.
- The lowest performing racial/ethnic subgroup in the school is often excluded from schools reporting at the higher subgroup size. In 24 percent of the schools, the lowest performing racial-ethnic group changes when the subgroup size is reduced from 30+ to 20+.

[^0]
Supplemental policy analysis

In May 2016, we released a policy memo ${ }^{1}$ comparing the effect of reporting subgroups at an n size of $20+$ compared to $100+$. This memo revealed that setting the n-size for school-level reporting at 20 greatly increases the number of schools that report results for specific student subgroups, particularly students with disabilities and African American students. In response to this initial memo, the U.S. Department of Education released a rule notice proposing changes to ESSA regulation §200.17 allowing states "to establish a range of n-sizes, not to exceed 30, so that States may select an n-size that is both valid and reliable. ${ }^{, 2}$ To support state-level policymaking under these new requirements, this supplemental policy analysis will illustrate the trade-offs between subgroup sizes of 20+ and 30+.

The analyses here are based on data from the CORE Districts, including Fresno, Long Beach, Los Angeles, Oakland, San Francisco, and Santa Ana Unified School Districts. The analysis includes 1,030 schools, representing 12 percent of California's student population. While the SQII represents a multiple-metric approach to measuring school performance encompassing both academic and social emotional factors, in this analysis we focus only on mathematics performance as measured by the SBAC in 2015.

We find that the choice between setting minimum subgroup size at 20+ or 30+ has significant implications for how many schools report subgroups at the $30+$ vs. $20+$ thresholds. As shown in the chart below, only 32 percent of schools report an African American subgroup when the subgroup size is $30+$, but this number reaches 41 percent when the subgroup size is decreased to $20+$. To put this another way, 29 percent more schools report African American subgroups when the subgroup size is decreased from 30+ to 20+. The effect is even bigger for students with disabilities. Only 52 percent of schools report students with disabilities as a subgroup when the subgroup size is $30+$, but this number reaches 73 percent when the subgroup size is decreased to $20+$, an increase of 39 percent.

[^1]
Percent of Schools Reporting, by Subgroup Threshold

The CORE Districts report four subgroup categories in the School Quality Improvement Index (SQII): the "lowest performing racial/ethnic group" (LPRG), disadvantaged students, students with disabilities, and English learners. There is a significant difference in the number of the four CORE SQII subgroups reported by schools at a threshold of $20+$ vs. $30+$ vs. 100+. As shown below, changing the subgroup size from 100+ to $30+$ to $20+$ increases the count of schools with all four math index subgroups from 68 at a subgroup size of $100+(7$ percent) to 512 at $30+(50$ percent) to 708 at $20+$ (69 percent). At a subgroup size of $20+$, approximately 38 percent more schools report results for all student subgroups than at a subgroup size of 30+.

Number of Subgroups by School

As shown below, the identification of the lowest performing racial/ethnic group (LPRG) changes significantly depending on what subgroup size threshold is employed. When we compare $20+$ to $30+$, we now see very few schools that report no LPRG at either threshold. However, 24% of schools identify different subgroups as the LPRG when the subgroup size is increased from 20+ to $30+$. The changing of the LPRG when subgroup size is decreased indicates that the schools’ most vulnerable populations are often the students masked by the higher subgroup size.

- LPRG Same - LPRG Different - LPRG available for 20+ but not 30+

[^0]: *This memo represents work underway as part of the CORE-PACE Research Partnership. For more information, visit http://www.edpolicyinca.org/projects/pace-core-research-partnership

[^1]: ${ }^{1}$ http://www.edpolicyinca.org/publications/making-students-visible-comparing-different-student-subgroup-sizesaccountability
 ${ }^{2} \mathrm{https}: / / \mathrm{www} . f e d e r a l r e g i s t e r . g o v / a r t i c l e s / 2016 / 05 / 31 / 2016-12451 /$ elementary-and-secondary-education-act-of-1965-as-amended-by-the-every-student-succeeds\#footnotes
 *This memo represents work underway as part of the CORE-PACE Research Partnership. For more information, visit http://www.edpolicyinca.org/projects/pace-core-research-partnership

